Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Ann Clin Transl Neurol ; 11(3): 744-756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481040

RESUMO

OBJECTIVE: Methylation of plasma cell-free DNA (cfDNA) has potential as a marker of brain damage in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, we study methylation of cfDNA in presymptomatic and symptomatic carriers of genetic FTD pathogenic variants, next to healthy controls. METHODS: cfDNA was isolated from cross-sectional plasma of 10 presymptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), 10 symptomatic carriers (4 C9orf72, 4 GRN, and 2 MAPT), and 9 healthy controls. Genome-wide methylation of cfDNA was determined using a high-resolution sequencing technique (MeD-seq). Cumulative scores based on the identified differentially methylated regions (DMRs) were estimated for presymptomatic carriers (vs. controls and symptomatic carriers), and reevaluated in a validation cohort (8 presymptomatic: 3 C9orf72, 3 GRN, and 2 MAPT; 26 symptomatic: 7 C9orf72, 6 GRN, 12 MAPT, and 1 TARDBP; 13 noncarriers from genetic FTD families). RESULTS: Presymptomatic carriers showed a distinctive methylation profile compared to healthy controls and symptomatic carriers. Cumulative DMR scores in presymptomatic carriers enabled to significantly differentiate presymptomatic carriers from healthy controls (p < 0.001) and symptomatic carriers (p < 0.001). In the validation cohort, these scores differentiated presymptomatic carriers from symptomatic carriers (p ≤ 0.007) only. Transcription-start-site methylation in presymptomatic carriers, generally associated with gene downregulation, was enriched for genes involved in ubiquitin-dependent processes, while gene body methylation, generally associated with gene upregulation, was enriched for genes involved in neuronal cell processes. INTERPRETATION: A distinctive methylation profile of cfDNA characterizes the presymptomatic stage of genetic FTD, and could reflect neuronal death in this stage.


Assuntos
Ácidos Nucleicos Livres , Demência Frontotemporal , Doença de Pick , Humanos , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Estudos Transversais , Metilação de DNA , Mutação , Doença de Pick/genética , Ácidos Nucleicos Livres/genética
2.
Epigenetics ; 19(1): 2318516, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38484284

RESUMO

Epigenetic modifications, including DNA methylation, are proposed mechanisms explaining the impact of parental exposures to foetal development and lifelong health. Micronutrients including folate, choline, and vitamin B12 provide methyl groups for the one-carbon metabolism and subsequent DNA methylation processes. Placental DNA methylation changes in response to one-carbon moieties hold potential targets to improve obstetrical care. We conducted a systematic review on the associations between one-carbon metabolism and human placental DNA methylation. We included 22 studies. Findings from clinical studies with minimal ErasmusAGE quality score 5/10 (n = 15) and in vitro studies (n = 3) are summarized for different one-carbon moieties. Next, results are discussed per study approach: (1) global DNA methylation (n = 9), (2) genome-wide analyses (n = 4), and (3) gene specific (n = 14). Generally, one-carbon moieties were not associated with global methylation, although conflicting outcomes were reported specifically for choline. Using genome-wide approaches, few differentially methylated sites associated with S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), or dietary patterns. Most studies taking a gene-specific approach indicated site-specific relationships depending on studied moiety and genomic region, specifically in genes involved in growth and development including LEP, NR3C1, CRH, and PlGF; however, overlap between studies was low. Therefore, we recommend to further investigate the impact of an optimized one-carbon metabolism on DNA methylation and lifelong health.


Assuntos
Metilação de DNA , Placenta , Feminino , Humanos , Gravidez , Placenta/metabolismo , Estudo de Associação Genômica Ampla , Ácido Fólico , S-Adenosilmetionina/metabolismo , Colina/metabolismo , Carbono/metabolismo
3.
Cancers (Basel) ; 16(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38398132

RESUMO

Tumors with a pathogenic BRCA1/2 mutation are homologous recombination (HR)-deficient (HRD) and consequently sensitive to platinum-based chemotherapy and Poly-[ADP-Ribose]-Polymerase inhibitors (PARPi). We hypothesized that functional HR status better reflects real-time HR status than BRCA1/2 mutation status. Therefore, we determined the functional HR status of 53 breast cancer (BC) and 38 ovarian cancer (OC) cell lines by measuring the formation of RAD51 foci after irradiation. Discrepancies between functional HR and BRCA1/2 mutation status were investigated using exome sequencing, methylation and gene expression data from 50 HR-related genes. A pathogenic BRCA1/2 mutation was found in 10/53 (18.9%) of BC and 7/38 (18.4%) of OC cell lines. Among BRCA1/2-mutant cell lines, 14/17 (82.4%) were HR-proficient (HRP), while 1/74 (1.4%) wild-type cell lines was HRD. For most (80%) cell lines, we explained the discrepancy between functional HR and BRCA1/2 mutation status. Importantly, 12/14 (85.7%) BRCA1/2-mutant HRP cell lines were explained by mechanisms directly acting on BRCA1/2. Finally, functional HR status was strongly associated with COSMIC single base substitution signature 3, but not BRCA1/2 mutation status. Thus, the majority of BRCA1/2-mutant cell lines do not represent a suitable model for HRD. Moreover, exclusively determining BRCA1/2 mutation status may not suffice for platinum-based chemotherapy or PARPi patient selection.

4.
Epigenomes ; 8(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390897

RESUMO

Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.

5.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199845

RESUMO

Protein ubiquitylation regulates key biological processes including transcription. This is exemplified by the E3 ubiquitin ligase RNF12/RLIM, which controls developmental gene expression by ubiquitylating the REX1 transcription factor and is mutated in an X-linked intellectual disability disorder. However, the precise mechanisms by which ubiquitylation drives specific transcriptional responses are not known. Here, we show that RNF12 is recruited to specific genomic locations via a consensus sequence motif, which enables co-localisation with REX1 substrate at gene promoters. Surprisingly, RNF12 chromatin recruitment is achieved via a non-catalytic basic region and comprises a previously unappreciated N-terminal autoinhibitory mechanism. Furthermore, RNF12 chromatin targeting is critical for REX1 ubiquitylation and downstream RNF12-dependent gene regulation. Our results demonstrate a key role for chromatin in regulation of the RNF12-REX1 axis and provide insight into mechanisms by which protein ubiquitylation enables programming of gene expression.


Assuntos
Cromatina , Deficiência Intelectual , Humanos , Cromatina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Genômica
6.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835478

RESUMO

Aberrant DNA methylation changes have been reported to be associated with carcinogenesis in cirrhotic HCC, but DNA methylation patterns for these non-cirrhotic HCC cases were not examined. Therefore, we sought to investigate DNA methylation changes on non-cirrhotic HCC using reported promising DNA methylation markers (DMMs), including HOXA1, CLEC11A, AK055957, and TSPYL5, on 146 liver tissues using quantitative methylation-specific PCR and methylated DNA sequencing. We observed a high frequency of aberrant methylation changes in the four DMMs through both techniques in non-cirrhotic HCC compared to cirrhosis, hepatitis, and benign lesions (p < 0.05), suggesting that hypermethylation of these DMMs is specific to non-cirrhotic HCC development. Also, the combination of the four DMMs exhibited 78% sensitivity at 80% specificity with an AUC of 0.85 in discriminating non-cirrhotic HCC from hepatitis and benign lesions. In addition, HOXA1 showed a higher aberrant methylation percentage in non-cirrhotic HCC compared to cirrhotic HCC (43.3% versus 13.3%, p = 0.039), which was confirmed using multivariate linear regression (p < 0.05). In summary, we identified aberrant hypermethylation changes in HOXA1, CLEC11A, AK055957, and TSPYL5 in non-cirrhotic HCC tissues compared to cirrhosis, hepatitis, and benign lesions, providing information that could be used as potentially detectable biomarkers for these unusual HCC cases in clinical practice.

7.
Cancers (Basel) ; 15(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37760576

RESUMO

Colorectal cancer (CRC) colonoscopic surveillance is effective but burdensome. Circulating tumor DNA (ctDNA) analysis has emerged as a promising, minimally invasive tool for disease detection and management. Here, we assessed which ctDNA assay might be most suitable for a ctDNA-based CRC screening/surveillance blood test. In this prospective, proof-of-concept study, patients with colonoscopies for Lynch surveillance or the National Colorectal Cancer screening program were included between 7 July 2019 and 3 June 2022. Blood was drawn, and if advanced neoplasia (adenoma with villous component, high-grade dysplasia, ≥10 mm, or CRC) was detected, it was analyzed for chromosomal copy number variations, single nucleotide variants, and genome-wide methylation (MeD-seq). Outcomes were compared with corresponding patients' tissues and the MeD-seq results of healthy blood donors. Two Lynch carriers and eight screening program patients were included: five with CRC and five with advanced adenomas. cfDNA showed copy number variations and single nucleotide variants in one patient with CRC and liver metastases. Eight patients analyzed with MeD-seq showed clustering of Lynch-associated and sporadic microsatellite instable lesions separate from microsatellite stable lesions, as did healthy blood donors. In conclusion, whereas copy number changes and single nucleotide variants were only detected in one patient, cfDNA methylation profiles could discriminate all microsatellite instable advanced neoplasia, rendering this tool particularly promising for LS surveillance. Larger studies are warranted to validate these findings.

8.
Hum Genomics ; 17(1): 37, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098643

RESUMO

Myelodysplastic syndromes (MDS) consist of a group of hematological malignancies characterized by ineffective hematopoiesis, cytogenetic abnormalities, and often a high risk of transformation to acute myeloid leukemia (AML). So far, there have been only a very limited number of studies assessing the epigenetics component contributing to the pathophysiology of these disorders, but not a single study assessing this at a genome-wide level. Here, we implemented a generic high throughput epigenomics approach, using methylated DNA sequencing (MeD-seq) of LpnPI digested fragments to identify potential epigenomic targets associated with MDS subtypes. Our results highlighted that PCDHG and ZNF gene families harbor potential epigenomic targets, which have been shown to be differentially methylated in a variety of comparisons between different MDS subtypes. Specifically, CpG islands, transcription start sites and post-transcriptional start sites within ZNF124, ZNF497 and PCDHG family are differentially methylated with fold change above 3,5. Overall, these findings highlight important aspects of the epigenomic component of MDS syndromes pathogenesis and the pharmacoepigenomic basis to the hypomethylating agents drug treatment response, while this generic high throughput whole epigenome sequencing approach could be readily implemented to other genetic diseases with a strong epigenetic component.


Assuntos
Metilação de DNA , Síndromes Mielodisplásicas , Humanos , Metilação de DNA/genética , Epigenômica , Epigênese Genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Progressão da Doença , Ilhas de CpG/genética , Proteínas de Ligação a DNA/genética
9.
Cancers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36900167

RESUMO

According to the current guidelines, watchful waiting (WW) is a feasible option for patients with good or intermediate prognosis renal-cell carcinoma (RCC). However, some patients rapidly progress during WW, requiring the initiation of treatment. Here, we explore whether we can identify those patients using circulating cell-free DNA (cfDNA) methylation. We first defined a panel of RCC-specific circulating methylation markers by intersecting differentially methylated regions from a publicly available dataset with known RCC methylation markers from the literature. The resulting RCC-specific methylation marker panel of 22 markers was subsequently evaluated for an association with rapid progression by methylated DNA sequencing (MeD-seq) in serum from 10 HBDs and 34 RCC patients with a good or intermediate prognosis starting WW in the IMPACT-RCC study. Patients with an elevated RCC-specific methylation score compared to HBDs had a shorter progression-free survival (PFS, p = 0.018), but not a shorter WW-time (p = 0.15). Cox proportional hazards regression showed that only the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) criteria were significantly associated with WW time (HR 2.01, p = 0.01), whereas only our RCC-specific methylation score (HR 4.45, p = 0.02) was significantly associated with PFS. The results of this study suggest that cfDNA methylation is predictive of PFS but not WW.

10.
Nat Biotechnol ; 41(11): 1582-1592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823354

RESUMO

Cell state changes in development and disease are controlled by gene regulatory networks, the dynamics of which are difficult to track in real time. In this study, we used an inducible DCM-RNA polymerase subunit b fusion protein which labels active genes and enhancers with a bacterial methylation mark that does not affect gene transcription and is propagated in S-phase. This DCM-RNA polymerase fusion protein enables transcribed genes and active enhancers to be tagged and then examined at later stages of development or differentiation. We apply this DCM-time machine (DCM-TM) technology to study intestinal homeostasis, revealing rapid and coordinated activation of enhancers and nearby genes during enterocyte differentiation. We provide new insights in absorptive-secretory lineage decision-making in intestinal stem cell (ISC) differentiation and show that ISCs retain a unique chromatin landscape required to maintain ISC identity and delineate future expression of differentiation-associated genes. DCM-TM has wide applicability in tracking cell states, providing new insights in the regulatory networks underlying cell state changes.


Assuntos
Cromatina , Transcriptoma , Linhagem da Célula/genética , Transcriptoma/genética , Estudos Retrospectivos , Diferenciação Celular/genética , Cromatina/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Elementos Facilitadores Genéticos/genética
11.
Sci Adv ; 9(3): eadd2913, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652512

RESUMO

The murine embryonic-trophoblast-extra-embryonic endoderm (ETX) model is an integrated stem cell-based model to study early postimplantation development. It is based on the self-assembly potential of embryonic, trophoblast, and hypoblast/primitive/visceral endoderm-type stem cell lines (ESC, TSC, and XEN, respectively) to arrange into postimplantation egg cylinder-like embryoids. Here, we provide an optimized method for reliable and efficient generation of ETX embryoids that develop into late gastrulation in static culture conditions. It is based on transgenic Gata6-overproducing ESCs and modified assembly and culture conditions. Using this method, up to 43% of assembled ETX embryoids exhibited a correct spatial distribution of the three stem cell derivatives at day 4 of culture. Of those, 40% progressed into ETX embryoids that both transcriptionally and morphologically faithfully mimicked in vivo postimplantation mouse development between E5.5 and E7.5. The ETX model system offers the opportunity to study the murine postimplantation egg cylinder stages and could serve as a source of various cell lineage precursors.

12.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303074

RESUMO

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Adulto , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Organoides , Rim , Antígeno CD24/genética
13.
PLoS Genet ; 18(7): e1010046, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857787

RESUMO

Recombinases RAD51 and its meiosis-specific paralog DMC1 accumulate on single-stranded DNA (ssDNA) of programmed DNA double strand breaks (DSBs) in meiosis. Here we used three-color dSTORM microscopy, and a mouse model with severe defects in meiotic DSB formation and synapsis (Hormad1-/-) to obtain more insight in the recombinase accumulation patterns in relation to repair progression. First, we used the known reduction in meiotic DSB frequency in Hormad1-/- spermatocytes to be able to conclude that the RAD51/DMC1 nanofoci that preferentially localize at distances of ~300 nm form within a single DSB site, whereas a second preferred distance of ~900 nm, observed only in wild type, represents inter-DSB distance. Next, we asked whether the proposed role of HORMAD1 in repair inhibition affects the RAD51/DMC1 accumulation patterns. We observed that the two most frequent recombinase configurations (1 DMC1 and 1 RAD51 nanofocus (D1R1), and D2R1) display coupled frequency dynamics over time in wild type, but were constant in the Hormad1-/- model, indicating that the lifetime of these intermediates was altered. Recombinase nanofoci were also smaller in Hormad1-/- spermatocytes, consistent with changes in ssDNA length or protein accumulation. Furthermore, we established that upon synapsis, recombinase nanofoci localized closer to the synaptonemal complex (SYCP3), in both wild type and Hormad1-/- spermatocytes. Finally, the data also revealed a hitherto unknown function of HORMAD1 in inhibiting coil formation in the synaptonemal complex. SPO11 plays a similar but weaker role in coiling and SYCP1 had the opposite effect. Using this large super-resolution dataset, we propose models with the D1R1 configuration representing one DSB end containing recombinases, and the other end bound by other ssDNA binding proteins, or both ends loaded by the two recombinases, but in below-resolution proximity. This may then often evolve into D2R1, then D1R2, and finally back to D1R1, when DNA synthesis has commenced.


Assuntos
Proteínas de Ciclo Celular , Espermatócitos , Complexo Sinaptonêmico , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Masculino , Meiose/genética , Camundongos , Camundongos Knockout , Microscopia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinases/genética , Recombinases/metabolismo , Espermatócitos/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
14.
Stem Cells ; 40(6): 577-591, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35524742

RESUMO

Induced pluripotent stem cell (iPSC)-derived kidney organoids are a potential tool for the regeneration of kidney tissue. They represent an early stage of nephrogenesis and have been shown to successfsully vascularize and mature further in vivo. However, there are concerns regarding the long-term safety and stability of iPSC derivatives. Specifically, the potential for tumorigenesis may impede the road to clinical application. To study safety and stability of kidney organoids, we analyzed their potential for malignant transformation in a teratoma assay and following long-term subcutaneous implantation in an immune-deficient mouse model. We did not detect fully functional residual iPSCs in the kidney organoids as analyzed by gene expression analysis, single-cell sequencing and immunohistochemistry. Accordingly, kidney organoids failed to form teratoma. Upon long-term subcutaneous implantation of whole organoids in immunodeficient IL2Ry-/-RAG2-/- mice, we observed tumor formation in 5 out of 103 implanted kidney organoids. These tumors were composed of WT1+CD56+ immature blastemal cells and showed histological resemblance with Wilms tumor. No genetic changes were identified that contributed to the occurrence of tumorigenic cells within the kidney organoids. However, assessment of epigenetic changes revealed a unique cluster of differentially methylated genes that were also present in undifferentiated iPSCs. We discovered that kidney organoids have the capacity to form tumors upon long-term implantation. The presence of epigenetic modifications combined with the lack of environmental cues may have caused an arrest in terminal differentiation. Our results indicate that the safe implementation of kidney organoids should exclude the presence of pro-tumorigenic methylation in kidney organoids.


Assuntos
Células-Tronco Pluripotentes Induzidas , Teratoma , Animais , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/patologia , Camundongos , Organogênese , Organoides/metabolismo , Teratoma/patologia
15.
Sci Rep ; 12(1): 42, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997020

RESUMO

Uveal melanoma (UM) is an aggressive intra-ocular cancer with a strong tendency to metastasize. Metastatic UM is associated with mutations in BAP1 and SF3B1, however only little is known about the epigenetic modifications that arise in metastatic UM. In this study we aim to unravel epigenetic changes contributing to UM metastasis using a new genome-wide methylation analysis technique that covers over 50% of all CpG's. We identified aberrant methylation contributing to BAP1 and SF3B1-mediated UM metastasis. The methylation data was integrated with expression data and surveyed in matched UM metastases from the liver, skin and bone. UM metastases showed no commonly shared novel epigenetic modifications, implying that epigenetic changes contributing to metastatic spreading and colonization in distant tissues occur early in the development of UM and epigenetic changes that occur after metastasis are mainly patient-specific. Our findings reveal a plethora of epigenetic modifications in metastatic UM and its metastases, which could subsequently result in aberrant repression or activation of many tumor-related genes. This observation points towards additional layers of complexity at the level of gene expression regulation, which may explain the low mutational burden of UM.


Assuntos
Melanoma/genética , Melanoma/metabolismo , Metástase Neoplásica/genética , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Análise Mutacional de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metilação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
Nat Commun ; 12(1): 7000, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853312

RESUMO

At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI. Spen null female mouse embryonic stem cells (ESCs) are defective in Xist upregulation upon differentiation. We find that Xist-mediated SPEN recruitment to the Xi chromosome happens very early in XCI, and that SPEN-mediated silencing of the Tsix promoter is required for Xist upregulation. Accordingly, failed Xist upregulation in Spen-/- ESCs can be rescued by concomitant removal of Tsix. These findings indicate that SPEN is not only required for the establishment of the Xi, but is also crucial in initiation of the XCI process.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Inativação do Cromossomo X , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Regiões Promotoras Genéticas , Ativação Transcricional , Transcriptoma , Regulação para Cima
17.
Clin Epigenetics ; 13(1): 196, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34670587

RESUMO

BACKGROUND: DNA methylation detection in liquid biopsies provides a highly promising and much needed means for real-time monitoring of disease load in advanced cancer patient care. Compared to the often-used somatic mutations, tissue- and cancer-type specific epigenetic marks affect a larger part of the cancer genome and generally have a high penetrance throughout the tumour. Here, we describe the successful application of the recently described MeD-seq assay for genome-wide DNA methylation profiling on cell-free DNA (cfDNA). The compatibility of the MeD-seq assay with different types of blood collection tubes, cfDNA input amounts, cfDNA isolation methods, and vacuum concentration of samples was evaluated using plasma from both metastatic cancer patients and healthy blood donors (HBDs). To investigate the potential value of cfDNA methylation profiling for tumour load monitoring, we profiled paired samples from 8 patients with resectable colorectal liver metastases (CRLM) before and after surgery. RESULTS: The MeD-seq assay worked on plasma-derived cfDNA from both EDTA and CellSave blood collection tubes when at least 10 ng of cfDNA was used. From the 3 evaluated cfDNA isolation methods, both the manual QIAamp Circulating Nucleic Acid Kit (Qiagen) and the semi-automated Maxwell® RSC ccfDNA Plasma Kit (Promega) were compatible with MeD-seq analysis, whereas the QiaSymphony DSP Circulating DNA Kit (Qiagen) yielded significantly fewer reads when compared to the QIAamp kit (p < 0.001). Vacuum concentration of samples before MeD-seq analysis was possible with samples in AVE buffer (QIAamp) or water, but yielded inconsistent results for samples in EDTA-containing Maxwell buffer. Principal component analysis showed that pre-surgical samples from CRLM patients were very distinct from HBDs, whereas post-surgical samples were more similar. Several described methylation markers for colorectal cancer monitoring in liquid biopsies showed differential methylation between pre-surgical CRLM samples and HBDs in our data, supporting the validity of our approach. Results for MSC, ITGA4, GRIA4, and EYA4 were validated by quantitative methylation specific PCR. CONCLUSIONS: The MeD-seq assay provides a promising new method for cfDNA methylation profiling. Potential future applications of the assay include marker discovery specifically for liquid biopsy analysis as well as direct use as a disease load monitoring tool in advanced cancer patients.


Assuntos
Ácidos Nucleicos Livres/análise , Metilação de DNA/genética , Ácidos Nucleicos Livres/genética , Metilação de DNA/fisiologia , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Biópsia Líquida/métodos , Biópsia Líquida/estatística & dados numéricos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos
19.
Stem Cells Dev ; 30(22): 1103-1114, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549597

RESUMO

Human-induced pluripotent stem cell (iPSC)-derived kidney organoids have the potential to advance studies to kidney development and disease. However, reproducible generation of kidney organoids is a challenge. A large variability in the percentage of nephron structures and the expression of kidney-specific genes was observed among organoids, showing no association with iPSC lines. To associate the quality of kidney organoid differentiation with predictive markers, a ranking system was developed based on the ratio of nephron structure determined by histological examination. Well-differentiated organoids were defined as organoids with >30% nephron structure and vice versa. Subsequently, correlations were made with expression profiles of iPSC markers, early kidney development markers, and fibrosis markers. Higher expression of sex-determining region Y-box 2 (SOX2) during differentiation was associated with poorly differentiated kidney organoid. Furthermore, early secretion of basic fibroblast growth factor (FGF2) predicted poorly differentiated kidney organoid. Of interest, whereas cadherin-1 (CDH1) expression in kidney organoids indicates distal tubules formation, onefold higher CDH1 expression in iPSC predicted poor differentiation. High expression of the stromal progenitor marker Forkhead Box D1 (FOXD1) and significantly increased TGFß levels were found in well-differentiated kidney organoids. These early expression profiles could predict the outcome of kidney organoid formation. This study helps to improve the robustness of kidney organoid protocols.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Humanos , Rim , Organoides
20.
Nat Cell Biol ; 23(8): 881-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326481

RESUMO

The 11 zinc finger (ZF) protein CTCF regulates topologically associating domain formation and transcription through selective binding to thousands of genomic sites. Here, we replaced endogenous CTCF in mouse embryonic stem cells with green-fluorescent-protein-tagged wild-type or mutant proteins lacking individual ZFs to identify additional determinants of CTCF positioning and function. While ZF1 and ZF8-ZF11 are not essential for cell survival, ZF8 deletion strikingly increases the DNA binding off-rate of mutant CTCF, resulting in reduced CTCF chromatin residence time. Loss of ZF8 results in widespread weakening of topologically associating domains, aberrant gene expression and increased genome-wide DNA methylation. Thus, important chromatin-templated processes rely on accurate CTCF chromatin residence time, which we propose depends on local sequence and chromatin context as well as global CTCF protein concentration.


Assuntos
Fator de Ligação a CCCTC/fisiologia , Cromatina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica , Genoma , Células-Tronco Pluripotentes/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Mitose , Células-Tronco Embrionárias Murinas , Mutação , Células-Tronco Pluripotentes/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...